Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.11.10.467646

RESUMEN

Game animals are wildlife species often traded and consumed as exotic food, and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1725 game animals, representing 16 species and five mammalian orders, sampled across China. From this we identified 71 mammalian viruses, with 45 described for the first time. Eighteen viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high risk viruses. We identified the transmission of Bat coronavirus HKU8 from a bat to a civet, as well as cross-species jumps of coronaviruses from bats to hedgehogs and from birds to porcupines. We similarly identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Síndrome Respiratorio Agudo Grave
2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.05.08.084061

RESUMEN

The emergence of a novel coronavirus, SARS-CoV-2, resulted in a pandemic. Here, we used recently released X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptor allows to define residues important for binding. From the 20 amino acids in ACE2 that contact S up to seven can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S-binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or the acquisition of N-glycosylation sites located near the S-interface. Of note, pigs and dogs which are not or not effectively infected, respectively, have only a few changes in the binding site have relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with viruses from bat and pangolin revealed that the latter contains only one substitution, whereas the bat virus exhibits five. However, ACE2 of pangolin exhibit seven changes relative to human ACE2, a similar number of substitutions is present in ACE2 of bats, raccoon, and civet suggesting that SARS-CoV-2 may not especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-COV-2. IMPORTANCESARS-CoV-2 is threatening people worldwide and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes indicating that the species barrier might be low. However, the lower expression of ACE2 in the upper respiratory tract of some pets and livestock means more research and monitoring should be done to explore the animal source of infection and the risk of potential cross-species transmission. Finally, the analysis also showed that SARS-CoV-2 may not specifically adapted to any of its putative intermediate hosts.


Asunto(s)
COVID-19 , Infecciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA